Objectives:

- Define definite integrals.
- Find areas under curves using definite integrals.

Definitions: If f is a function defined for $a \leq x \leq b$, we divided the interval $[a, b]$ into n subintervals of equal width

$$
\Delta x=
$$

We let $x_{0}=a, x_{1}, \ldots, x_{n}=b$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any \qquad in these subintervals, so x_{i}^{*} is in the i th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is
provided the limit exists. If the limit does exist, we say that f is \qquad .

Terminology: Let's break down the notation $\int_{a}^{b} f(x) d x$.

- The symbol \int is called an \qquad
- $f(x)$ is the \qquad
- a and b are the \qquad
- a is the \qquad and b is the \qquad
- We call computing an integral \qquad
Some intuition: The definite integral is computing \qquad but we consider any area above the x-axis is \qquad and any area underneath the x-axis is
\qquad -
But wait! Our definition shows that the definite integral is also \qquad

Some useful things:

- The sum of the integers from 1 to $n: \sum_{i=1}^{n} i=$
- The sum of the squares of integers from 1 to $n: \sum_{i=1}^{n} i^{2}=$
- The sum of the cubes of integers from 1 to $n: \sum_{i=1}^{n} i^{3}=$

Example 1 Write down a definite integral that gives the area of the shaded region.

Example 2 Evaluate $\int_{0}^{3} 12-6 t d t$ by drawing a the region and computing the area.

Example 3 Evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ by drawing a the region and computing the area.

Example 4 A table of values of $f(x)$ is given below. Estimate $\int_{0}^{12} f(x) d x$ using Riemann sums.

x	0	3	6	9	12
$f(x)$	32	22	15	11	9

Example 5 Calculate $\int_{0}^{2} x^{3} d x$ exactly using a limit of Riemann sums.

Theorem If $f(x)$ is \qquad , or if $f(x)$ has only a finite number of jump discontinuities, then f is \qquad , i.e., the definite integral exists.

Things to note: We have assumed that $a<b$ for defining $\int_{a}^{b} f(x) d x$, but the Riemann sum will allow $a>b$. If $a>b$, then Δx used to be $\frac{b-a}{n}$ and is now \qquad . So we have

$$
\int_{b}^{a} f(x) d x=
$$

What if $a=b$? Then $\Delta x=$ \qquad so

$$
\int_{a}^{a} f(x) d x
$$

Properties of Definite Integrals: Let $f(x)$ and $g(x)$ be continuous functions and c some constant number.

1. $\int_{a}^{b} c d x=$
2. $\int_{a}^{b}[f(x)+g(x)] d x=$
3. $\int_{a}^{b} c f(x) d x=$
4. $\int_{a}^{b}[f(x)-g(x)] d x=$
5. $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=$

Example 6 Evaluate $\int_{0}^{2}\left(4+5 x^{3}\right) d x$.

