Objectives:

- Define definite integrals.
- Find areas under curves using definite integrals.

Definitions: If f is a function defined for $a \le x \le b$, we divided the interval [a, b] into n subintervals of equal width

 $\Delta x =$

We let $x_0 = a, x_1, \ldots, x_n = b$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any _________ in these subintervals, so x_i^* is in the *i*th subinterval $[x_{i-1}, x_i]$. Then the **definite integral of f from a to b** is

provided the limit exists. If the limit does exist, we say that f is

		rb		
Terminology:	Let's break down the notation		f(x)	dx
	•	la		

- The symbol \int is called an _____
- f(x) is the _____
- *a* and *b* are the ______
- a is the _____ and b is the _____
- We call computing an integral

Some intuition: The definite integral is computing ________ and any area underneath the *x*-axis is _______ and any area underneath the *x*-axis is

But wait! Our definition shows that the definite integral is also _____

Some useful things:

- The sum of the integers from 1 to n: $\sum_{i=1}^{n} i =$
- The sum of the squares of integers from 1 to n: $\sum_{i=1}^{n} i^2 =$
- The sum of the cubes of integers from 1 to n: $\sum_{i=1}^{n} i^{3} =$

Example 1 Write down a definite integral that gives the area of the shaded region.

Example 2 Evaluate $\int_0^3 12 - 6t \, dt$ by drawing a the region and computing the area.

Example 3 Evaluate $\int_0^2 \sqrt{4-x^2} \, dx$ by drawing a the region and computing the area.

Example 4 A table of values of f(x) is given below. Estimate $\int_0^{12} f(x) dx$ using Riemann sums.

x	0	3	6	9	12
f(x)	32	22	15	11	9

Example 5 Calculate $\int_0^2 x^3 dx$ exactly using a limit of Riemann sums.

Theorem If f(x) is _____, or if f(x) has only a finite number of jump discontinuities, then f is _____, i.e., the definite integral _____

exists.

Things to note: We have assumed that a < b for defining $\int_{a}^{b} f(x) dx$, but the Riemann sum will allow a > b. If a > b, then Δx used to be $\frac{b-a}{n}$ and is now ______. So we have

$$\int_{b}^{a} f(x) \, dx =$$

 \mathbf{SO}

What if a = b? Then $\Delta x =$

$$\int_{a}^{a} f(x) \ dx$$

Properties of Definite Integrals: Let f(x) and g(x) be continuous functions and c some constant number.

1.
$$\int_{a}^{b} c \, dx =$$

2.
$$\int_{a}^{b} \left[f(x) + g(x) \right] \, dx =$$

3.
$$\int_{a}^{b} cf(x) \, dx =$$

4.
$$\int_{a}^{b} \left[f(x) - g(x) \right] \, dx =$$

5.
$$\int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx =$$

Example 6 Evaluate $\int_0^2 (4+5x^3) dx$.